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Executive Summary

The accuracy of many of the NWS’s forecast products, even its regional forecast
products, are constrained by the limitations of NOAA’s global forecast model.
Unfortunately, our global forecasts are less accurate than those from competing
numerical weather prediction centers such as the European Center for Medium-Range
Weather Forecasts (ECMWF). For most sensible-weather metrics, we lag 1 to 1.5 days
(i.e., they make a 3.5-day forecasts as skillful as our 2-day forecast).

Dramatically increased computational resources devoted to global modeling are
necessary but not sufficient for NOAA to improve its global forecast modeling capacity.
The increased accuracy from a threefold resolution increase can be expected to be
roughly comparable to the impact of using an advanced data assimilation technique,
e.g., 4D-Var instead of 3D-Var. Depending on the method of evaluation, a threefold
increase resolution and the use of advanced data assimilation technique may provide an
additional several hours to several days of additional forecast lead time, i.e., with both
we may be able to make a 3-day forecast as well as we previously made a 2-day
forecast. These improvements are much larger than the improvement that can be
expected by dedicating the same amount of resources to augmenting the observing
system.

In addition to augmented HPC to support higher-resolution models and
advanced data assimilation, there are several other advances that may be able to
contribute significantly to improved global forecasts, and these can be facilitated by
advanced HPC. These include the development of improved model physical
parameterizations, the coupling of forecast state components, the use of ensemble
prediction methods, and the development and use of reforecast data sets to correct
systematic forecast model deficiencies. Higher-resolution systems may also be able to
be deployed with the same resources devoted to HPC through code optimization and
processor changes (graphical processing units, or GPUs) instead of, or in addition to
central processing units (CPUs).

The improvement in forecasts from adopting a next-generation global modeling
system can be demonstrated in 2011 on Oak Ridge National Lab (ORNL) computers
provided through stimulus funds. Assuming the demonstration of large performance
increases at ORNL, we propose as a target for NOAA to procure the computational
resources to allow it to deploy a system comparable to ECMWF’s by 2014, a global
ensemble with ~15-km grid spacing. Without adoption of GPUs, we estimate
approximately 150,000 CPU cores will be needed (two thirds dedicated to operations
and parallel testing, one-third to research). With the use of GPUs, the computational
capacity may be able to be enlarged by an order of magnitude or more, permitting an
additional doubling of model resolution.

Such an investment will represent a tiny fraction of NOAA’s current investment
in weather satellites. Without a modern data assimilation system and high-quality
global forecast model, NOAA’s investment in its satellites cannot be fully realized.



1. Introduction

Global atmospheric forecast models are the backbone of NOAA’s weather
predictions. While regional models may provide detail over the US or over
hurricanes, the fidelity of this detail is highly constrained by the accuracy of the
global forecast model data, which feeds the regional models their lateral boundary
conditions. A developing cyclone over Japan can change the weather patterns over
North America within two days (Fig. 1), so regional models sometimes produce very
poor forecasts unless they are provided with high-quality global forecast data on
their boundaries (Fig. 2). An improved global modeling system is the tide that can lift
all of NOAA’s weather forecast boats.

In many important measures, NOAA’s global forecast model guidance and its
ensemble guidance are much less skillful than those from the European Center for
Medium-Range Weather Forecasts (ECMWF; Fig. 3, Hamill et al. 2010), and in other
measures NCEP’s global forecast guidance is only competitive with guidance from
other countries with much smaller populations and world responsibilities (e.g., Fig.
4; Hagedorn et al. 2010). While there are some subtle reasons why we are behind,
there are several obvious reasons, too. Our global deterministic model in early 2010
was less than one-third the horizontal resolution of ECMWF’s (their T12791, or
~13.5 km grid spacing at 30° N vs. our T382, or ~45 km). NOAA has not always
lagged ECMWEF. In 1991, NOAA briefly ran a T126 deterministic forecast model
while ECMWF ran a T106 model. Since then, ECMWF has systematically improved
their global system (Fig. 5). One major reason why ECMWF’s forecasts have
improved more quickly than ours has been their more aggressive pace of increasing
the model resolution. They increased their deterministic model resolution in 1991
(from T106 to T213); in 1998 (to T319); in 2003 (to T511); in 2006 (to T799) and
in 2010 (to T1279). In contrast, from 1991 to 2010, NCEP’s Global Forecast System
(GFS) model has increased resolution from T126 to T382.

Another area where other forecast centers have made more rapid progress is
in the data assimilation techniques used to initialize the forecasts. Every other
major numerical weather prediction center, including ECMWEF, the UK Met Office,
the Canadian Meteorological Centre, Météo France, and the Japanese Meteorological
Agency run a four-dimensional variational (“4D-Var”) data assimilation system,

1 The T### denotes the global spectral wavenumber at which the forecasts are truncated.
For example, T300 indicates that the model is able to resolve a wave as small as 1/300th of
the circumference of the earth. Hence, the higher the T-number, the finer the model
resolution. The spacing of the grids used for processes such as radiation and
parameterizations differs between NCEP and ECMWF, even at the same wavenumber
truncation. NCEP uses a higher-resolution “quadratic” Gaussian grid that is necessary to
prevent aliasing of quadratic terms with their Eulerian time-stepping scheme. ECMWF,
which uses semi-Lagrangian time-stepping scheme that is not subject to aliasing, is able to
use a coarser grid. See http://tinyurl.com/242cng7 and

www.rclace.eu/File/EUMETNET /raport.pdf.




while NOAA runs a three-dimensional system (“3D-Var”). ECMWF has had an
operational 4D-Var since 1997. 4D-Var and the comparable ensemble Kalman filter
(EnKF), also in development within NOAA, require 10 to 100 times the
computational resources of 3D-Var.

There are other reasons for the large differences in skill between ECMWF
and NCEP shown in Figs. 3 and 4. For example, ECMWEF assimilates a somewhat
wider variety and greater number of observations, in part due to waiting for more
data before beginning their assimilation process. They have more staff dedicated to
improving the physical parameterizations in their forecast model, the code that
describes how the land interacts with the atmosphere, or how an unresolvable,
small-scale thunderstorm’s effects on the larger-scale weather patterns may be
estimated; and they compute in real time a ~20 year, 5-member ensemble of
“reforecasts” with their operational medium-range ensemble prediction system to
aid in the detection and correction of systematic errors in their forecasts. Their
forecast model is also more computationally efficient; by using a “semi-Lagrangian”
advection scheme, they can use much longer time steps in their model and hence
produce a forecast at the same resolution as ours at a reduced computational
expense.

Let’s assume that NOAA procures significantly augmented HPC. What will
this provide to NOAA and its customers? HPC alone will not permit us to suddenly
eliminate the gap with ECMWF, but it can have a substantial impact. In this white
paper we attempt to quantify the improvements that can be expected from
increasing the resolution, from assimilating more observations, from changing the
data assimilation, and so on. We will use standard meteorological metrics, such as
improved skill or decreased RMS error; we make no attempt here to quantify the
number of lives saved or economic disruptions avoided. Implicitly we are
assuming that you, the reader, will be able to see that if the sum of the
improvements results in the ability to make a 3-day forecast as well as we used to
make a 2-day forecast, this should have major positive consequences (think starting
the evacuation of New Orleans 3 days prior to Katrina instead of 2, or avoiding the
unnecessary evacuation of Houston for hurricane in advance of Rita).

Below, section 2 attempts to quantify these improvements. We will draw
numerical weather prediction experiments from across the US and the globe in
order to show that the conclusions about the impact of data assimilation and
resolution are not model-specific. Section 3 briefly discusses some other factors that
may affect the future performance of forecast models, and section 4 proposes a path
forward, a plan for testing an advanced global modeling system and then what
NOAA should procure and what R&D NOAA should do to deploy a system
competitive with ECMWF in 2014.



2. The impacts of improved modeling techniques provided by increased HPC.

There are many possible ways to improve numerical forecast guidance.
These include assimilating new observations; improving the data assimilation
technique; refining the forecast model resolution; improving the “physics” in
forecast models; adopting coupled model approaches; using ensemble prediction
techniques; and conducting “reforecasts” to facilitate statistical post-processing. To
varying extents, each of these requires augmented high-performance computing.

We consider first the potential impact of new observations. Figure 6
provides some evidence suggesting that assimilating additional observations may
not be the most cost-effective way to improve forecast guidance. ECMWF has run
two reanalyses? during the last decade, “ERA-40" using 3D-Var and a T159 forecast
model, and “ERA-Interim” with 4D-Var and a T255 forecast model. Each
assimilated, effectively, the operational observed data stream available over the
reanalysis periods. ERA-Interim’s modest increase in resolution, its improved
forecast model, and especially the use of 4D-Var led to a modest increase in forecast
skill of subsequent forecasts, approximately one-half day extra lead in forecasts
relative to ERA-40. That s, a day-5 ERA-Interim forecast was about as skillful in
anomaly correlation as a day-4.5 forecast from ERA-40. Note, however, that the skill
of the ERA-Interim forecasts did not change appreciably over the nearly two
decades, suggesting that the additional remotely sensed observations that were
added over those decades had a secondary effect. This suggests that an incremental
dollar spent on improving numerical weather prediction and assimilation methods is
likely to provide a much greater beneficial effect than a dollar spent on new
observations. There may be some exceptions to this, such as observations that
provide detail on hurricanes.

How much improvement can be attributed to the advanced data assimilation,
how much to the forecast model, and how much to other effects such as improving
model physics? Figure 7 shows results of experiments conducted at the Canadian
Meteorological Centre using a metric that emphasizes the performance of predicting
the mid-latitude jet stream. Increasing the resolution of the forecast model
threefold had about the equivalent effect of changing the data assimilation from 3D-
to 4D-Var. This is similar to the additional computational expense incurred for each.
The increased resolution and 4D-Var had a synergistic effect, improving the forecast
further when both were combined. In these experiments, the only change to the
forecast model was the threefold increase in resolution. In practice, NWP centers
find that the effects of increased resolution can be magnified if the forecast model is
“tuned” to the new resolution, and improvement is commonly greater when
examining other model aspects such as surface temperature or precipitation due in

2 A reanalysis is a multi-decadal, retrospective analysis of the atmospheric state using a
fixed forecast model and data assimilation system; estimates of the atmospheric state are
provided twice or four times daily each day over the decades.



part to improved representation of terrain features. The improvements in Fig. 7
thus represent a lower bound.

NOAA has conducted many of its own experiments concerning the effect of
model resolution and data assimilation. During 2009, NOAA examined the effects on
hurricane tracks from using higher-resolution ensemble prediction system (T382
vs. the operational T126) and an advanced data assimilation method, the EnKF.3
Figure 8 shows a more substantial positive impact from the increase in resolution
and the data assimilation upgrade. The new EnKF-initialized T382 ensemble
forecast provided greatly improved forecasts relative to the NCEP operational
system, and the experimental forecasts were competitive with those from the
ECMWEF operational system. However, in metrics similar to those used in Fig. 7, the
new data assimilation system and increased resolution made up only about one-half
the difference between the NCEP and ECMWEF operational systems (Table 1).

NCEP/EMC has made many improvements to its GFS forecast over the past
decade, and the relationship of these changes to changes in forecast skill can also
provide some evidence about the impact of observations, resolution, assimilation,
and other effects. Table 2 lists the changes to the NCEP GFS from 1999 -2009.
Figure 9 shows the percent of annual mean 500 hPa anomaly correlation (AC)
scores in the Northern and Southern Hemispheres (NH, SH) that are judged “poor,”
defined as those having an AC score below 0.7 for each year. After 1998, there is a
steadily decreasing fraction of poor forecasts in both hemispheres, strong evidence
that the overall GFS forecasts are improving. When horizontal resolution increases
were implemented in 2000, 2002 and 2005 (1a, 1b, 1c), the fractions of poor
forecasts in the NH decreased noticeably thereafter. These improvements were not
as noticeable in the SH. Changes in model physics (2a) improved SH and tropical
scores (not shown), but had little apparent impact in the NH. Adding AMSU-A in
1999 improved forecasts in both hemispheres but other changes to the data
assimilation and observations (3, 4) improved scores when combined with other
changes, primarily resolution. This is particularly true over 2007-2009, where the
introduction of the GSI 3D-Var data assimilation scheme (Kleist et al. 2009) and
COSMIC radio-occultation data (Anthes et al. 2008) appear to have made noticeable
improvements.

Physically, what are the mechanisms for the improvement of forecasts with
extra resolution? One major aspect is the ability to define the geography more
precisely. Figure 10 shows the approximate terrain height for the operational
ECMWF and NCEP global ensemble forecasts over North America. Features like
California’s Coast Range largely disappear with the coarser NCEP terrain. Another
problem with coarse resolution models is that they cannot model the detail of the
small, weather-producing features and their interaction with the large-scale flow. A
hurricane eye wall may have a 100-km diameter, so a model with grid points

3 NOAA did not have the in-house computational capacity to perform these experiments; the
National Science Foundation supplied the HPC.



separated by 90 km (roughly the T190 resolution of the operational GFS ensemble
at 30° N) can resolve none of the crucial detail, not the eye, the eye wall, nor the rain
bands (Fig. 11; also Gentry and Lackmann 2010). Hence these resolution models
cannot be expected to realistically predict the high-impact phenomena such as eye
wall replacement cycles and rapid intensification. The practical effect of this can be
seen in experiments in 2009 with global forecast models at different resolutions.
The bias in the forecast of maximum wind speeds in tropical cyclones was
substantially reduced as the resolution was increased (Fig. 12). Figure 13 provides
an illustration of the increased fidelity to observations that becomes possible as
resolution is dramatically increased.*

The adoption of ensemble prediction techniques also has also led to a major
positive impact on prediction skill. All major operational NWP centers now run
ensemble prediction systems, multiple forecasts from slightly different initial
conditions, and possibly using different forecast models. To reduce their
computational expense somewhat, at ECMWF and NCEP, the ensembles are
conducted with models at half the resolution of the respective deterministic
forecasts. Ensemble techniques are necessary because of the chaotic nature of the
atmosphere; two model forecasts started from slightly different states will grow to
become radically different as forecast lead increases. Ensemble prediction
techniques permit a better estimate of the mean state (e.g., Fig. 14, from Toth and
Kalnay 1997). The averaging of forecasts filters out the less-predictable aspects
while retaining those that are consistent from one member to another. Ensembles
also provide quantitative estimates of forecast uncertainty, estimates that can be
especially useful for rare, high-impact events (Fig. 15, Palmer 2006, and National
Research Council, 2006). Ensemble techniques are also now being used in advanced
data assimilation techniques such as the EnKF and EnKF-variational hybrids
(Whitaker et al. 2008, Buehner et al. 2010ab).

There are other changes to forecasts that can contribute to increased forecast
skill. ECMWF’s has dedicated more human and computational resources to
developing improved “physical parameterizations.” The computational expense of
these parameterizations now greatly exceeds the cost of the basic forecast model
dynamics, and as forecast parameterizations are improved, they will take up an
even larger fraction of the overall computational expense. It is difficult to quantify
the specific contribution of improved physical parameterizations to forecast skill,
but this effect is significant. Further, we do know that there are many phenomena in
the atmosphere whose improper prediction can be traced to deficiencies in
parameterizations, such as the Madden-Julian Oscillation (Lin et al. 2006).

4 Grid spacings of O(1 km) as in Fig. 12 will not be possible in the foreseeable future with
global models but will be possible by embedding regional prediction models within global
models. In section 4, a potential computer upgrade is proposed for 2014, sized to permit
~15-km global ensembles. Nested regional hurricane ensembles with ~1-km grid spacing
would be possible using the remaining cycles.



In the future, more realistic forecasts will also be possible if we can couple
the ocean, atmosphere, land, cryosphere, and chemistry together in the modeling
system rather than modeling them as systems that act independently. These coupled
systems will also be more computationally expensive to run.

A final way that has been shown to improve forecast guidance is to post-
process it using past forecasts and observations. Systematic model errors can be
especially pronounced for these very sensible weather elements that are of greatest
interest, such as surface temperature and precipitation. These systematic errors
can be mostly corrected before dissemination to the customer if many past forecasts
and observations are available. For many phenomena such as long-lead forecasts
and forecasts of heavy precipitation, a long set of such “reforecasts” are necessary.
The potential impact of reforecasts is shown in Figs. 16 and 17 (Hamill et al. 2006).
Unfortunately, reforecasts are computationally expensive; not only must one
compute a real-time forecast, but compute forecasts for dates in the past as well.
Despite the computational expense, ECMWF runs a 20-year, 5-member ensemble
reforecast operationally every seventh day (Hagedorn 2008).

3. Other factors affecting the future performance of global forecast models.

Two other technological improvements may allow us to run higher-
resolution models for the same expected cost. The first is to deploy models and data
assimilation systems that are more computationally efficient and that “parallelize”
well. A system that parallelizes well will run approximately in 1/n the amount of
wall time on n processors compared to its wall time running on a single processor.
This may affect the type of models and data assimilation upgrades that are pursued;
some approaches parallelize better than others.

Another promising new approach is to adapt forecast models and
assimilation systems to run on graphical processing units, or GPUs. ESRL scientists
recently demonstrated a 25-fold increase in performance running a simplified
global model on GPUs relative to CPUs. Also, the speed of GPUs is currently
increasing rapidly and is expected to do so for the foreseeable future, while per-unit
CPU performance increases are now slowing. ESRL scientists will be testing and
optimizing global models on GPUs in the coming years.

4. A plan for upgrading computational resources.

To provide more quantitative evidence for the impact of upgrades to the
global model, we propose a parallel test of a high-resolution global ensemble
forecast and data assimilation system using “stimulus” computers soon to be
installed at Oak Ridge National Labs (ORNL). We anticipate several months after
their installation before these computers are filled with climate applications, and
data assimilation and ensemble forecast software can be rapidly ported and parallel
tested during this period. We anticipate running a 20-member ensemble daily using
NOAA global forecast models to 10 days lead, with the models at approximately 15-



km grid spacing. Forecasts would be compared against NCEP operational forecast
using standard metrics and disseminated widely for forecaster feedback. This is the
approximate resolution that we expect ECMWEF forecasts to operate at in 2014.

Presuming a successful demonstration, NOAA would then have quantitative
evidence to justify large HPC upgrades in 2014 and beyond. Again, as a benchmark,
let us assume we will deploy an equivalent resolution data assimilation and forecast
system to ECMWEF’s expected 2014 system. Currently ECMWEF is running their
global ensemble at T639 (roughly 30 km resolution) - this is currently more than
three times the resolution of NCEP’s operational ensemble. The ECMWF expects to
be running ensembles at twice that resolution (15 km) by 2014. A 15-km global
ensemble run within a hybrid 4D-Var/EnKF data assimilation system with on the
order of 50 ensemble members will require on the order of 50,000 CPU cores, if 10-
day forecasts are to be completed in 1 hour’s wall time (Hamrud 2010). The cost of
the data assimilation would be dominated by the cost of cycling the ensemble
forecasts forward 6 hours for the EnKF, so this should be a negligible fraction of the
overall medium-range ensemble computational expense. Forecasts beyond 10 days
would be computed at a lower resolution, say T319, making the cost of the
subsequent monthly forecast again a fraction of the cost of the 10-day forecast.
Other resource intensive applications, such as short-range, limited-area ensembles
and reforecasts could be computed using the available cycles during different times
of the day.

Assuming a backup system is available for operations and parallel testing
(another 50, 000 CPUs) and a similar system is available for research (another
50,000 CPUs) this brings the total number of needed CPUs to 150,000. While such
systems are expensive now, the per-CPU cost will decrease significantly the next
four years.

A major investment in model/data assimilation and software development
will be required to effectively make use of new computer resources. An intensive
effort will need to improve the computational efficiency and the performance of
NOAA operational global forecast model. This will require additional R&D into
improved physical parameterizations and representations of model uncertainty. A
concurrent effort to accelerate the development of an advanced hybrid
variational/ensemble data assimilation system will be needed. Success will require
unprecedented cooperation between NOAA research and operational labs, with a
focus on developing a single (but flexible and extensible) ensemble prediction and
data assimilation system that is second to none in forecast skill.
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Figure 1: Hovmoller (time-longitude) diagram of the 250-mb meridional wind

component (ms'l) for the period 28 July - 14 August 2002 and the latitudinal belt
40-602 N. On 1 August 2002, a growing cyclone near Japan (tail end of arrow)
caused downstream Rossby-wave development (arrow) that began to affect western
North America two days later (dot). Extreme flooding in central Europe occurred at
the end of this period, on 11 August 2002. A skillful global forecast of the
cyclogenesis east of Japan and the subsequent Rossby wave dispersion was thus
necessary for a skillful short-range forecast over the US and for a medium-range
forecast over Europe. Image provided by the NOAA/ESRL Physical Sciences Division,
Boulder Colorado from their Web site at www.esrl.noaa.gov/psd/.
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Figure 2: 72-h deterministic forecasts of 500-hPa geopotential height from (a)
NCEP and (b) ECMWF operational forecasts, initialized at 1200 UTC 10 October
2008 (which was much closer to the analyzed state 3 days later). Box denotes a
hypothetical domain for a high-resolution regional model. Given the large
differences in the large-scale flow, the regional model would be unlikely to produce
the detail inside the box consistent with ECMWF’s forecast given NCEP’s lateral
boundary conditions; the boundary conditions would strongly affect the solution
inside the box. Data downloaded from TIGGE database (Bougeault et al. 2010).
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Figure 3: Comparison of NCEP and ECMWEF tropical cyclone track forecast mean
absolute position error for tropical cyclones between 1 August and 4 October 2009.
Error bars denote the confidence intervals; differences outside the intervals are
statistically significant at the 5% level. Counts at the top are the number of tropical
cyclones that were successfully tracked by both models. Data from Hamill et al.
(2010).
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Figure 4: Continuous ranked probability skill score (1.0=perfect, 0.0=skill of
climatology) for global 2-m temperature forecasts from four major operational
global models. Forecasts are verified against the ERA-interim reanalysis, and each
forecast model’s output has been bias-corrected using the previous 30-days’
differences between the mean forecast and the ERA-interim analysis. “UKMO”
denotes UK Met Office forecasts, “CMC” denotes Canadian Meteorological Centre
forecasts. From Hagedorn et al. (2010).
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Figure 5: Improvement in the 500-hPa anomaly correlation of ECMWEF’s operational
deterministic forecasts for 3-, 5-, and 7-day forecasts. Courtesy of Adrian Simmons,
ECMWE.
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Figure 6: Anomaly correlation of 3-, 5-, and 7-day deterministic forecasts initialized
from ERA-40 reanalysis (grey) and ERA-Interim (colored). All ERA-40 forecasts
used the same T159 forecast model, and all ERA-Interim forecasts used the same
fixed T255 forecast. Courtesy of Adrian Simmons, ECMWF.
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Figure 7. Error of 500-hPa geopotential height forecasts from the Canadian
Meteorological Center global forecast modeling system with 3D- and 4D-Var data
assimilation and grid spacings of 100 and 33 km. c/o Stephane LaRoche and Gilbert
Brunet, Environment Canada.
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Figure 8: (a) 2009 tropical cyclone track errors from experimental global forecasts
with a threefold increase in resolution and an ensemble Kalman filter relative to
NCEP operational forecasts. Error bars denote confidence intervals; forecasts
outside of the range of the confidence intervals are statistically significant at the 5
percent level. Numbers in parentheses denote the number of cyclones that were
tracked simultaneously by both models. (b) as in (a), but against ECMWF’s
operational forecasts. From Hamill et al. (2010).
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Figure 9: The percentage of 500-hPa Northern-hemisphere “poor” forecasts,
defined as those with an anomaly correlation of 0.7 or below, for each year from
1996-2009. Arrows indicate the changes, listed in Table 2, made to the GFS.
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Figure 10: Approximation of the terrain used in ECMWF’s operational T639 (~24-
km at 45° N) forecast model and NCEP’s T190 (~72-km at 45° N) forecast model,
here shown for the southwestern US. Actual terrain fields used in the spectral
models have additional unrealistic “artifacts” due to the numerical phenomenon of
“spectral ringing.” Internally generated by T. Hamill using US Navy high-resolution
terrain data set.
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Figure 11: Hurricane Ike radar reflectivity at 0607 UTC 13 September 2008. Box
represent the approximate size of a grid box in the current operational T190 GFS
ensemble.
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Figure 12: Maximum wind speed error and bias of deterministic forecasts from
operational and experimental NOAA models. Lines in the top part of the plot show
the mean absolute error; bars on the bottom part of the plow show the mean wind
speed bias. Model data plotted are the operational GFS initialized with the GSI 3D-
Var (“AVNO”); the NOAA ESRL FIM model initialized with the GSI at 30-km
resolution (“FIM8”); the FIM at 30-km resolution initialized with an EnKF (“F8EM");
and the 15-km resolution FIM (“FOEM”) and 10-km FIM (“FOEM”). Internal results
c/o Mike Fiorino, NOAA.
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Airborne radar observed rain in
Hurricane Floyd (1999)

15kmk .. I

distance from conter (km) distance from center (km)

Figure 13: Hurricane Floyd radar reflectivity compared to MM5 model simulations
showing the effect of varying the model grid resolution from (b) 1.6 km to (c) 15 km,
and (d) 45 km, representative of current research hurricane models, operational
regional models, and operational global models, respectively.
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Figure 14: Illustration of the effect of ensemble averaging. Here, the anomaly
correlation of 500-hPa geopotential height (larger is better) is compared between a
single deterministic forecast and an average of a 10-member ensemble started with
perturbed initial conditions. From Toth and Kalnay (1997).

21



Deterministic predictions | Verification

Ensemble forecast of Lothar (surface pressure)
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Figure 15: “Stamp map” forecasts of the damaging December 1999 “Lothar” storm
in Europe. In all panels, the contours are sea-level pressure 42 h after the initial
time of the forecasts, 1200 UTC 24 December 1999. England is in the upper-left
corner of each panel, France in the center. The 42-h deterministic forecast (upper-
left) failed to produce any storm, while the verification (also upper left) showed that

in fact an intense storm (with strong damaging winds) was observed.

Approximately one third the 50 forecast members also predict the development of a

similar very intense storm. From Palmer (2006).
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Figure 16: Example of the potential benefit that a reforecast data set can provide
through correction of systematic error through its statistical downscaling. Panel (a)
shows the analyzed precipitation from the North American Regional Reanalysis
(Mesinger et al. 2006). Panel (b) shows the ensemble-mean precipitation forecast
from the T62 reforecast data set. Panel (c) shows an estimate of the probability of
greater than 50 mm rainfall (~ 2 inches) during this period. The probabilities in
panel (c) were developed using a regression model trained on past ensemble-mean
forecasts and the past analyzed precipitation. The regression coefficients were then
applied to the rainfall pattern in (b). The reforecast is thus able to pick up where the
coarse-resolution forecast is raining too much (in the San Joaquin Valley) or too
little (along the Coast Range, or the Sierra Nevada Front) on average. For more
details, see Hamill et al. (2006).
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(b) BSS of 25 mm, JFM 2002
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Figure 17: Brier skill score (a measure of probabilistic forecast skill) of
precipitation forecasts greater than 25 mm, estimated directly from the NCEP global
ensemble prediction system and after post-processing using reforecasts. From
Hamill et al. (2006).
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ECMWF T399 GFS/3D-Var T126 GFS/EnKF T382
RMSE 500-mb height,
N. Hem. 32.35 39.98 36.22
RMSE 500-mb height,
S.Hem. 51.14 63.12 56.72
AC 500-mb height, N.
Hem. 0.888 0.832 0.854
AC 500-mb height, S.
Hem. 0.891 0.829 0.856

Table 1: Root-mean square errors (RMSE; lower is better) and anomaly correlations (AC;
higher is better) of 72-h forecasts from the 2009 operational ECMWF T399 ensemble-mean
forecasts, the operational GFS-based ensemble at NCEP (3D-Var initial condition, T126
forecast model), and the experimental T382 GFS ensemble initialized with the EnKF. All
errors are measured with respect to the own products’s analyses, and all verifications are
performed on a 2.5-degree latitude-longitude grid. Results from internal calculations by J.

Whitaker, NOAA.

Type of Change Change Date
1. Horizontal and/or | 1a. Horizontal resolution increase: from 100 km to | 2/2000
vertical resolution 70 km and L28 to L42
1b. Horizontal resolution increase: 70 km to 55 km | 11/2002
and L42 to L64
1c. Horizontal resolution increase: 55 km to 38 km | 5/2005
1d. Change vertical coordinate from sigma to sigma- | 5/2007
pressure
2. Model physics 2a. Prognostic cloud water, cumulus momentum 5/2001
transport
2b. Reduce background vertical diffusion 5/2005
3. Data assimilation | 3a. Introduce Gridpoint Statistical Interpolation 5/2007
(GSD)
3b. Flow-dependent weighting of background 2/2009
variances and Variational Quality Control
4. Adding new 4a. AMSU-A and HIRS-3 3/1999
observations
4b. AIRS central spot, AQUA AMSU-A 5/2005
4c. COSMIC, full resolution AIRS, METOP HIRS, 5/2007

AMSU-A, MHS

Table 2. List of major changes to the NCEP GFS by Type of Change (1-4). Each change in
column 2 is referred to in Figure 9.
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